Convex-Faced Combinatorially Regular Polyhedra of Small Genus
نویسندگان
چکیده
Combinatorially regular polyhedra are polyhedral realizations (embeddings) in Euclidean 3-space E of regular maps on (orientable) closed compact surfaces. They are close analogues of the Platonic solids. A surface of genus g > 2 admits only finitely many regular maps, and generally only a small number of them can be realized as polyhedra with convex faces. When the genus g is small, meaning that g is in the historically motivated range 2 6 g 6 6, only eight regular maps of genus g are known to have polyhedral realizations, two discovered quite recently. These include spectacular convex-faced polyhedra realizing famous maps of Klein, Fricke, Dyck, and Coxeter. We provide supporting evidence that this list is complete; in other words, we strongly conjecture that in addition to those eight there are no other regular maps of genus g, with 2 6 g 6 6, admitting realizations as convex-faced polyhedra in E. For all admissible maps in this range, save Gordan’s map of genus 4, and its dual, we rule out realizability by a polyhedron in E.
منابع مشابه
The Asymptotic Number of Convex Polyhedra
We obtain an asymptotic formula for the number of combinatorially distinct convex polyhedra with n edges.
متن کاملSimple equations giving shapes of various convex polyhedra: the regular polyhedra and polyhedra composed of crystallographically low-index planes
Simple equations are derived that give the shapes of various convex polyhedra. The five regular polyhedra, called Platonic solids (the tetrahedron, hexahedron or cube, octahedron, dodecahedron and icosahedron), and polyhedra composed of crystallographically low-index planes are treated. The equations also give shapes that are nearly polyhedral with round edges, or intermediate shapes between a ...
متن کاملThe Foldings of a Square to Convex Polyhedra
The structure of the set of all convex polyhedra foldable from a square is detailed. It is proved that five combinatorially distinct nondegenerate polyhedra, and four different flat polyhedra, are realizable. All the polyhedra are continuously deformable into each other, with the space of polyhedra having the topology of four connected rings.
متن کاملContinuous Flattening of a Regular Tetrahedron with Explicit Mappings
We use the terminology polyhedron for a closed polyhedral surface which is permitted to touch itself but not self-intersect (and so a doubly covered polygon is a polyhedron). A flat folding of a polyhedron is a folding by creases into a multilayered planar shape ([7], [8]). A. Cauchy [4] in 1813 proved that any convex polyhedron is rigid: precisely, if two convex polyhedra P, P ′ are combinator...
متن کامل21 Polyhedral Maps
Historically, polyhedral maps on surfaces made their first appearance as convex polyhedra. The famous Kepler-Poinsot (star) polyhedra marked the first occurrence of maps on orientable surfaces of higher genus (namely 4), and started the branch of topology dealing with regular maps. Further impetus to the subject came from the theory of automorphic functions and from the Four-Color-Problem (Coxe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 4 شماره
صفحات -
تاریخ انتشار 2012